
Excel Expert

Session 1

Instructor: Don Bremer

 Page 2 of 8

Excel Templates
Instead of doing a lot of the same work over again – use a template to off load some of your work for
you.

File->New-> Loan Amortization Schedule

A lot of work has been done to make this useful – all we need to do is add our information.

Create our own template-

In A1 and A2 – make the background gray. In A3 – create the formula =A1+A2.

Right click on the cell A3 and go to Format Cells…

Under the Protection Tab – Check Locked and Check Hidden.

Select A1 and A2 and the Uncheck Locked.

Before we save this, let’s protect the worksheet or workbook:

Worksheet: or Workbook:

 Page 3 of 8

Save the Workbook as My Calculator

It will then be something you can use under File->New….

 Page 4 of 8

Macros
Macros are simply small programs written in Visual Basic that do specific tasks. These macros can be
created or downloaded and incorporated into a spreadsheet.

In the View Tab of the Ribbon, Click on the Macros dropdown and Record New Macro

 Gets to the macro menu Macros… Alt+F8
Shows the macros in the workbook.

 Record New Macro…
Allows a person to create macros even if you don’t know the language

 Visual Basic Editor Alt+F11
This shows the language and commands used to create the macro

Macro Window

Hello World
The first program customarily written by a new programmer is “Hello World!”.
This program simply prints out Hello World. To do this using Excel macros,

 In the View Tab of the Ribbon, Click on the Macros dropdown and Record New Macro
New Macro:

o Name
o Shortcut (ctrl and/or shift)
o Store macro in…
o Description (help others)

 Enter in these commands
o Name – HelloWorld
o Shortcut – ctrl+w
o Store macro in… (This workbook)
o Description (Print out Hello World – First program)

 Click OK
 New Form comes up with a stop button
 Type in Hello World! and click on the stop button.
 Test it – in various places

Hello World (part 2)
It goes back to the same spot, regardless of where you start. To make it relative,
click on the red arrow right next to the stop button. Follow the steps above and
try again. Did it work?

Looking at the code
The commands that are used to create the Hello World should look like the
following:

 Page 5 of 8

Sub HelloWorld2()
'
' HelloWorld2 Macro
' Macro recorded 11/1/2003 by Don Bremer
'
' Keyboard Shortcut: Ctrl+w
'

ActiveCell.FormulaR1C1 = "Hello World"
ActiveCell.Offset(1, 0).Range("A1").Select

End Sub

The ‘ marks represent comments and are not read by the computer.

Structures of programming
There are actually 3 structures to any programming language. They are:

• Statement
• Loop
• Logical

To make a loop in a macro with a known number of times through, we can use
the for command. We can change the commands of the macro to read:

For i = 1 To 5

ActiveCell.FormulaR1C1 = "Hello World"
ActiveCell.Offset(1, 0).Range("A1").Select

Next

This will write “Hello World” on the cell, move down one cell, and write “Hello
World” again. Try this….

Logicals will ask a question. Depending on the answer, it will do a set of
commands. Take for example the last “Hello World” example. Instead of having
it say “Hello World” all 5 times, what if we have it say “Goodbye Cruel World!” on
the last loop. We can do that using the conditional (or if) statement:

For i = 1 To 5

If i = 5 Then
ActiveCell.FormulaR1C1 = "Goodbye Cruel World!"

Else
ActiveCell.FormulaR1C1 = "Hello World"

End If
ActiveCell.Offset(1, 0).Range("A1").Select

Next

 Page 6 of 8

Copy macros between workbooks
If you receive a workbook that contains one or more macros that you find useful, you can continue to
run those macros from within that workbook. However, you might find it useful or necessary to copy
those macros to one of your own workbooks. For example, if you have a workbook that you keep open
all the time, you might prefer to run the macros from that workbook rather than always having to keep
the original workbook open. Similarly, many macros make use of an Excel object named ThisWorkbook,
which refers to the workbook in which the macro is running. The only way to get such a macro to run
successfully in another workbook is to copy it to that file.

You can make all your macros easily and conveniently available by storing them in a special file called
the Personal Macro Workbook. However, before you can use this file, you must create it by recording a
macro and using the Personal Macro Workbook to store the resulting code. After you have created the
Personal Macro Workbook, it will appear in the Visual Basic Editor’s Project Explorer pane, so you can
follow the steps from the procedure for copying macros to copy macros to the Personal Macro
Workbook.

In the Project Explorer pane, locate the workbook that contains the macros you want to copy, and then
open that workbook’s branches until you see the contents of the Modules folder.

Drag the module you want to copy to the VBAProject branch of your other workbook. Excel copies the
module, creating the Modules branch in the other workbook if necessary.

 Page 7 of 8

Link Workbooks
This is used when there is more than one workbook involved and the information needs
to be linking into another spreadsheet. For example, if 3 different departments have
budget information and you need to create a budget from all 3.

>OPEN>LINKING – SUMMARY, LINKING – DEPT A, LINKING – DEPT B, LINKING – DEPT C

 Open all of the workbooks that need to be linked (make sure only those 4 are open)
 Click on the “View” Tab.
 Select the “Arrange All” button in the Window Section.
 Select Tiled
 Click on OK

Creating the link
o Select the range of cells from Dept.A that
represent the totals for Wages thru Postage.
o Copy the cells
o Click in the Summary Worksheet and click in B3

 Page 8 of 8

o Click on the “Paste” Dropdown on the Home Tab and select “Paste
Link”
o Repeat for Dept’s B and C

 Dept A Dept B Dept C

Wages

200,000

300,000

450,000

950,000

Payroll Taxes

30,000

45,000

67,500

142,500

Benefits

20,000

30,000

45,000

95,000

Office Supplies

3,000

4,500

6,000

13,500

Postage

1,500

3,000

4,500

9,000

Total

254,500

382,500

573,000

1,210,000

Reference table data by using structured references
When you need to reference part of a table in a formula, you could use a cell or range reference
that points to the area within the table that you want to use in your calculation. That works, but
it suffers from the same problem caused by using cell and range references in regular
worksheet formulas: the references often make the formulas difficult to read and understand.

The solution for a regular worksheet formula is to replace cell and range references with
defined names. For a table, you can use structured references. Excel offers a set of defined
names—also called specifiers—for various table elements (such as the data, the headers, and
the entire table), and it automatically creates names for the table fields. You can include these
names in your table formulas to make your calculations much easier to read and maintain.

First, here are the predefined specifiers that Excel offers for tables:

 #All The entire table, including the column headers and total row
 #Data The table data (that is, the entire table, not including the column headers and

total row)
 #Headers The table’s column headers
 #Totals The table’s total row
 @ The table row in which the formula appears

