Excel Expert
Session 1

Instructor: Don Bremer

Excel Templates
Instead of doing a lot of the same work over again — use a template to off load some of your work for
you.

File->New-> Loan Amortization Schedule

A lot of work has been done to make this useful — all we need to do is add our information.
Create our own template-

In Al and A2 — make the background gray. In A3 — create the formula =A1+A2.

Right click on the cell A3 and go to Format Cells...

Under the Protection Tab — Check Locked and Check Hidden.

A3 x Fo || =A1+A2

1=1 0
B W P | =
.f-:-'l

| Format Cells ?
o ;
DT Mumber Alignment Font Border Fill Protection
P Miocked:
of] Hidden

Locking cells or hiding formulas has no effect until you protect the worksheet (Review tab,
a Protect group, Protect Sheet button),

Select A1 and A2 and the Uncheck Locked.

Before we save this, let’s protect the worksheet or workbook:

Worksheet: or Workbook:
liew Help I £ Search
7
=Nl
Show MNotes Protect F i':-! EEE E_—F/P I: IZ
Comments v Sheet Wi & e e
c § o rotect| Protect Allow Edit 1 Hide
b0 e Sheet Workbook Ranges Ink ~
Protect Sheet ? s Protect Ink
i Password to unprotect sheet: Protect Structure and Windows ? x

= | .
Password (optional):
Protect worksheet and contents of locked cells — ‘

[0

Allow all users of this worksheet to:

~

| Select unlocked cells Structure

[Format cells Windows

EFormat columns
Format rows

!D Insert columns Eatiel

[msert rows

[insert hyperlinks

||:| Delete columns

|L] Delete rows v

Protect workbook for

Page 2 of 8

Save the Workbook as My Calculator

Save As

‘T‘ 77 Documents = Custom Office Templates
@ Recent -
| My Calculator
1 I Excel Template (*.xIt) ¥ | E—:} Save
‘ OneDrive More options...
Other locations We didn't find anything to show here.

Fu
@ Add a Place
[Browse

It will then be something you can use under File->New....

A B L1 LOWN AMOATIZATION SCHEDULE

7 - T B e o
B o
- [] T i s

r Open

Info

Save
Blank workbook Loan amortization schedule

Save As

Print 3
Office Personal

Share

Export

Publish

Close

My Calculator

Page 3 of 8

Macros
Macros are simply small programs written in Visual Basic that do specific tasks. These macros can be
created or downloaded and incorporated into a spreadsheet.

In the View Tab of the Ribbon, Click on the Macros dropdown and Record New Macro

e Gets to the macro menu Macros... Alt+F8

Shows the macros in the workbook.
e Record New Macro...

Allows a person to create macros even if you don’t know the language
e Visual Basic Editor Alt+F11

This shows the language and commands used to create the macro

Macro Window

Hello World
The first program customarily written by a new programmer is “Hello World!”.
This program simply prints out Hello World. To do this using Excel macros,

e Inthe View Tab of the Ribbon, Click on the Macros dropdown and Record New Macro
New Macro:
o Name
o Shortcut (ctrl and/or shift)
o Store macroin...
o Description (help others)
e Enterin these commands
o Name — HelloWorld
o Shortcut — ctrl+w
o Store macro in... (This workbook)
o Description (Print out Hello World — First program)
e Click OK
e New Form comes up with a stop button
e Type in Hello World! and click on the stop button.
e Testit—invarious places

Hello World (part 2)

It goes back to the same spot, regardless of where you start. To make it relative,
click on the red arrow right next to the stop button. Follow the steps above and
try again. Did it work?

Looking at the code

The commands that are used to create the Hello World should look like the
following:

Page 4 of 8

Sub HelloWorld?2 ()

|

' HelloWorld2 Macro

' Macro recorded 11/1/2003 by Don Bremer

' Keyboard Shortcut: Ctrl+w
ActiveCell.FormulaR1Cl = "Hello World"
ActiveCell.Offset (1, 0) .Range ("Al") .Select

End Sub

The ‘ marks represent comments and are not read by the computer.

Structures of programming
There are actually 3 structures to any programming language. They are:

e Statement
e Loop
¢ Logical

To make a loop in @ macro with a known number of times through, we can use
the for command. We can change the commands of the macro to read:

For 1 = 1 To 5
ActiveCell.FormulaR1Cl = "Hello World"
ActiveCell.Offset (1, 0).Range("Al").Select
Next

This will write “Hello World” on the cell, move down one cell, and write “Hello
World” again. Try this....

Logicals will ask a question. Depending on the answer, it will do a set of
commands. Take for example the last “Hello World” example. Instead of having
it say “Hello World” all 5 times, what if we have it say “Goodbye Cruel World!” on
the last loop. We can do that using the conditional (or if) statement:

For i = 1 To 5
If i = 5 Then

ActiveCell.FormulaR1Cl = "Goodbye Cruel World!"
Else

ActiveCell.FormulaR1Cl = "Hello World"
End If

ActiveCell.Offset (1, 0).Range("Al").Select
Next

Page 5 of 8

Copy macros between workbooks

If you receive a workbook that contains one or more macros that you find useful, you can continue to
run those macros from within that workbook. However, you might find it useful or necessary to copy
those macros to one of your own workbooks. For example, if you have a workbook that you keep open
all the time, you might prefer to run the macros from that workbook rather than always having to keep
the original workbook open. Similarly, many macros make use of an Excel object named ThisWorkbook,
which refers to the workbook in which the macro is running. The only way to get such a macro to run
successfully in another workbook is to copy it to that file.

You can make all your macros easily and conveniently available by storing them in a special file called
the Personal Macro Workbook. However, before you can use this file, you must create it by recording a
macro and using the Personal Macro Workbook to store the resulting code. After you have created the
Personal Macro Workbook, it will appear in the Visual Basic Editor’s Project Explorer pane, so you can
follow the steps from the procedure for copying macros to copy macros to the Personal Macro
Workbook.

In the Project Explorer pane, locate the workbook that contains the macros you want to copy, and then
open that workbook’s branches until you see the contents of the Modules folder.

Drag the module you want to copy to the VBAProject branch of your other workbook. Excel copies the
module, creating the Modules branch in the other workbook if necessary.

Microsoft Visual Basic for Applications - functions.dsm [design] - O X
§Etle Edit View |[nset Format Debug Run Tools Add-lns Window Help

M- H L LBRA 9™ UJ@Q'&'; (7] 4
= (@] | |

=& VBAProject (functions.xism)
Ei {ﬁ Microsoft Excel Objects
Sheetl (Sheet1)
Sheet2 (Sheet2)
: Sheet3 (Sheet3)
ﬂ ThisWorkbook
= . Modules

"t [
=& VI!APm]ect(Hy Functions.xlsm)
Ei @ Nicroso&Exoel Objects
) sheetx (Sheet1)

& Module1

Page 6 of 8

Link Workbooks

This is used when there is more than one workbook involved and the information needs
to be linking into another spreadsheet. For example, if 3 different departments have
budget information and you need to create a budget from all 3.

>OPEN>LINKING — SUMMARY, LINKING — DEPT A, LINKING — DEPT B, LINKING — DEPT C

e Open all of the workbooks that need to be linked (make sure only those 4 are open)

e Click on the “View” Tab.

e Select the “Arrange All” button in the Window Section.

e Select Tiled
e C(Click on OK

A B8 o D E F (] H 1 0
1
2 DeptA DeptB DeptC
3 Wages
4 |Payroll Taxes
5 Benefits

6 Office Supplies
7 |Postage
8 | Total

A B c D E F G H i 4 K

1

2 Ju-00 Aug-00 Sep-00 Oct-00 Nov-00 Dec-00

3 |Wages 75,000 75,000 75,000 75000 75,000 75,000 450,000
4 |Payroll Taxes 11,250 11,250 11,250 11,250 11,250 11,250 67,500
5 |Benefits 7,500 7,500 7500 | 7,500 7,500 7,500 45,000
6 Office Supplies 1,000 1,000 1,000 1,000 1,000 1,000 6,000
7 |Postage 750 750 750 750 750 750 4,500
8 | Total 95500 95500 95500 95500 95500 95500 573,000
9

10

11

12

13

14

i)

3 |Wages
4 |Payroll Taxes
5 Benefits
6 |Office Supplies
7 |Postage
8 | Total

A
1

2

3 |\Wages

4 |Payroll Taxes
5 |Benefits

6 |Office Supplies
7 |Postage

8 | Total

9

10

11

12

13

14

15

Ju-00 Aug-00 Sep-00 Oct-00
30,000 30,000 30,000 30,000
4,500 4,500 4,500 4,500
3,000 3,000 3,000 3000

500 500 500 500
250 250 250 250
38,250 38,250 38,2250 38,250

B © D E
Ju-00 Aug-00 Sep-00 Oct-00
50,000 50,000 50,000 50,000
7,500 7,500 7,500 7,500
5,000 5,000 5,000 5,000
750 750 750 750
500 500 500 500
63,750 63,750 63,750 63,750

- %9
[G H { J K
Nov-00 Dec-00
30,000 50,000 200,000
4,500 7,500 30,000
3,000 5000 20,000
500 500 3,000

250 250 1,500
38,250 63,250 254,500

Nov-00 Dec-00

50,000 50,000 300,000
7,500 7,500 45,000
5,000 5,000 30,000

750 750 4,500
500 500 3,000
63,750 63,750 382,500

Creating the link

o Select the range of cells from Dept.A that
represent the totals for Wages thru Postage.
o Copy the cells

o Click in the Summary Worksheet and click in B3

Page 7 of 8

o Click on the “Paste” Dropdown on the Home Tab and select “Paste AutoSave (@ off)
Link”

o Repeat for Dept’s B and C File Home Insert
[1‘3'1 A
Dept A Dept B Dept C _|:| 0 Arial
Paste B B I L
Wages 200,000 300,000 450,000 950,000 . & L
Payroll Taxes 30,000 45,000 67,500 142,500 Paste
Benefits 20,000 30,000 45,000 95,000 G % r—ﬁ =
Office Supplies 3,000 4,500 6,000 13,500 [' [“' | 3
Postage 1,500 3,000 4,500 9,000 Paste Values
Total 254,500 382,500 573,000 1,210,000 || 1 [ﬂ | Jf;r

Other Paste Dptiu-ns

I_/ EJ @ -a@
Paste Special... iE!
7 |Postage

Reference table data by using structured references

When you need to reference part of a table in a formula, you could use a cell or range reference
that points to the area within the table that you want to use in your calculation. That works, but
it suffers from the same problem caused by using cell and range references in regular
worksheet formulas: the references often make the formulas difficult to read and understand.

The solution for a regular worksheet formula is to replace cell and range references with
defined names. For a table, you can use structured references. Excel offers a set of defined
names—also called specifiers—for various table elements (such as the data, the headers, and
the entire table), and it automatically creates names for the table fields. You can include these
names in your table formulas to make your calculations much easier to read and maintain.

First, here are the predefined specifiers that Excel offers for tables:
e #All The entire table, including the column headers and total row
e #Data The table data (that is, the entire table, not including the column headers and
total row)
e #Headers The table’s column headers
e H#Totals The table’s total row
e @ The table row in which the formula appears

Page 8 of 8

